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DCC formation and observation in nucleus-nucleus collisions
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High-energy nucleus-nucleus collisions may produce extended regions of space within
which chiral symmetry is temporarily nearly restored. The subsequent non-equilibrium
relaxation towards the normal vacuum may then produce disoriented chiral condensates:
isospin-directed oscillations of the pion field. The conditions for the occurrence of this
novel phenomenon and some of its observational consequences are discussed.

1. INTRODUCTION

Nucleus-nucleus collisions are generated in laboratories around the world for the purpose
of bringing the nuclear system far away from its ordinary tranquil state and thus make
it possible to explore novel aspects of its physical properties. As ever more powerful
accelerators (and increasingly refined detector systems) are becoming available, the scope
of these studies has steadily expanded. Not only has the accessible domain of the nuclear
chart grown explosively, but prospects have appeared [or probing fundamental features
of strongly interacting systems. In particular, a long-standing goal has been to probe the
non-perturbative properties of QCD and the expected transition to a deconfined quark-
gluon plasma phase. Of somewhat more recent date is the recognition that high-energy
nucleus-nucleus collisions may also provide key insights into chiral symmetry: the collision
may produce extended regions of space within which chiral symmetry is temporarily nearly
restored and the subsequent non-equilibrinm relaxation towards the normal vacuum may
then produce large-amplitude coherent oscillations of the pion field, disoriented chiral
condensates, which will lead to an enhanced emission of isospin-polarized soft pions [1-6).
This presentation seeks to provide simple and instructive iusight into the key features of
this novel phenomenon, the conditions for its actual occurrence in nuclear collisions, and
the prospects for its experimental detection. (For a recent review, sce ref. [7].)

2. EQUILIBRIUM

A suitable model framework is presented by the linear ¢ model, within which the
emergence of coherent long-wavelength oscillations in the pion field has been studied by
a number of investigators in a variety of idcalized scenarios. (For some of the earliest
dynamical studies, see refs. [3-13].)
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The linear o0 model describes the degrees of freedom associated with the isoscalar o
field and the isovector 7 field. These are conveniently combined into the (real) O(4) field
¢ which has a non-linear equation of motion,

d(r. ) = (o(r,t).w(r, 1)), D+ A - D) ¢ = He, (1)

where the three model parameters, A, v, and H, can be fixed by specifying the pion decay
constant fr and the two meson masses, . and m,. The vacuum field is aligned with
the o direction, ¢,,. = (fr,0), and at low tempcratures the field fluctuations represent
nearly free o and = mesons.

Instructive insight into the DCC phenomenon can be gained by decomposing the chiral
field into a smooth part, the order parameter, and the fluctuations around it. representing
the quasi-particles, ¢(v,t) = (1) 4+ 6¢(v,1). In the present discussion we shall confine
the field to a rectangular box with periodic boundary conditions and the decomposition
can then be made in a unique manner (¢ is then simply the spatial average (¢)). but
generally it needs to be done locally so ¢ itself may vary with position.

By taking the spatial average of the full equation of motion (1), it is possible to derive
an equation of motion for the order parameter {14]. If we subsequently subtract that
from (1) and apply a Hartree-type factorization, we obtain corresponding equations for
the field fluctnations [15). The resulting equations of motion are then of mean-field form,

(Ol @=Ho .  ph = M 6 +(66%) + 260 — v¥], (2)
[0+ k] 66y =0, pho= ABéE + (86%) + 2égh) — 0¥, (3)
[O+pt]éby =0,  p2 = A o} +(86%) + 26¢%) — oY) (4)

Here é¢) = 5¢0&5 is the fluctuation along the order parameter and é¢ | is the fluctuation
perpendicular to ¢. Furthermore, we have for simplicity ignored the cross terms arising
from correlations between field fluctuations in different ((4) directions (they vanish in
equilibrium). When those are retained as well, the resulting mean-field description is anal-
ogous to the collisionless Vlasov model famniliar from the description of nuclear dynamics
at intermediate energies {16].

The mean-field approximation is particularly useful for achieving an approximate de-
scription of thermal eqni]il)rium The spatial averages {-) are then replaced by the corre-

sponding thermal averages < - >, evaluated at the given temperature T,
! < 17 My _ . 1
< 8- = ()Z k sl = e T = pi:, (5)
< ni ;
<847 = = Z' —ED b= (T )T G = (4 R (6)

The volume of the box is given by € and k # 0 denotes the wave vector of the individual
quasi-particle modes in the cavity. We note that the effective masses increase with the
magnitude of the order parameter ¢ as well as with the field fluctuations. They are
degenerate for ¢o=0 and vanish at the “critical” temperature T, = \/2v. Moreover, we
always have p2 < p? < /Lﬁ.
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It is then possible to derive the corresponding expression for the partition function
associated with the chiral field

Zr = [Dlp.g) e HO = [aidio Wriw, @), Wil g) ~ e FE T80 ()

where 1 denotes the time derivative of the field ¢ and plays the role of its conjugate
momentum. The statistical weight W gives the relative probability for finding the system
with a specified value of the order parameter ¢ and its time derivative 1. Its simple
approximate form contains the kinetic energy density of the order parameter Ky = ¢3/2,
the effective potential energy density Vi, and the entropy density Sp associated with the
quasi-particle degrees of freedom for a given value of ¢g. The corresponding free energy
Fr = Vp — TSy can be expressed explicitly,

) A ) oy
Fr(¢) = H(g‘)g —v?)? — Hégcos xo + 5 [ln(l — e k”) +3In(1 — ™% /T)]
3 . . . )
- = 8o =2 + 2 < bgff »< 01 = + 5 <667 > (8)

The free energy is shown in Fig. 1. At high temperature, its minimum is located
near the origin and chiral symmetry is thus approximately restored. As 7" is decreased,
the accompanying reduction of the field fluctuations causes the free energy to gradually
change its appearance, with its minimum moving steadily outwards towards the vacuum
value. Figure 2 shows the corresponding temperature dependence of the effective quasi-
particle masses. Starting out at its free value m, for 7=0, the pion mass grows steadily
with 7', whereas the ¢ mass first experiences a significant dip (the minimum occurs at
T, = 240 MeV), before turning upwards and becoming nearly degenerate with the pion
mass, as approximate chiral symmetry is altained at high 7.
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Figure 1. The free energy Fy as a function Figure 2. The effective masses u, and p,
of the order parameter (along the ¢ axis) for for a thermal ensemble of field configura-
a number of temperatures 7' between zero tions in a cubic box with L=8 fm. The
and 240 MeV. The solid dots highlight the error bars show the effect of the thermal
equilibrium values. fluctuations of the order parameter.
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3. DYNAMICS

Since the interesting DCC dynamics proceeds far from equilibrium, it is important to
develop some means of capturing and depicting the essential features of an arbitrary field
configuration. This can be done by invoking the field decomposition mentioned above
and employ a “chiral phase diagram” which adopts the magnitude of the order parameter
as the abscissa and the field dispersion as the ordinate. Thus any given chiral field
configuration ¢(r.t) projects onto the point (¢, A¢), with ¢ = po¢p and A¢ = (692)1/2,
The field dispersion is a convenient general indicator of the degree of agitation in the
system and in thermal equilibrium it is related to the temperature T

Figure 3 shows the most important landmarks on the chiral phase diagram: the location
of the thermal equilibria and the region within which the soft quasi-pions are unstable.
The equilibrium values of the order parameter are those associated with the minima in
the free energy shown in Fig. 1. We note that the transition from the ordinary broken to
the approximately restored phase occurs as a smooth crossover for 7' & 180 — 240 MeV.
The minimum of the ¢ mass, which occurs within this range, is a convenient indicator of
the effective transition temperature [17] (shown as T, ~ 240 MeV in Fig. 2).

As is evident from Eq. (4), the square of the effective quasi-pion mass is negative in
the lower-left region of the chiral diagram, where both the order parameter and the field
fluctuations are small. Consequently, if the system enters this region, an exponential
amplification will be experienced by those pion modes for which w? = k% + 42 is negative.
This unstable region is delineated by an approximately parabolic curve which intersects
the abscissa at ¢ = v, somewhat below the ground-state value f,. Moreover, the critical
boundary curve reaches ¢o=0 when A¢? = %uz, obtained at the “critical” temperature
T. = 2v &~ 122 MeV for which the effective masses w4 and gy both vanish.
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Figure 3. The chiral phase diagram. The Figure 4. Dynamical trajectories of sys-
thermal equilibria are joined by the dashed tems prepared at 7,=400 MeV and then
curve and the region within which the soft subjected to a Rayeligh-type cooling emu-
pion modes are unstable is shaded. lating scaling expansion in D dimensions.
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The nucleus-nucleus collision is expected to generate a high degree of agitation in the
chiral field and thereby induce an approximate restoration of chiral symmetry. Thus,
the early field configuration is located somewhere in the upper-left region of the chiral
diagram shown on Fig. 3. Subsequently. the field fluctuations will rapidly subside, as
the combined result of expansion, radiation, and a possible supercooling [18,19]. This,
in turn, will modify the free energy (see I'ig. 1) and thus cause the order parameter to
grow. The emerging dynamical path on the chiral diagram will then be determined by
the balance between the effective cooling rate and the relaxation of the order parameter
towards its vaccum value.

An instructive impression of the time scales involved can be gained by studying the
response of the system to an imposed rate of cooling. For this purpose, it is convenient to
add the term —(D/t)d; on the right-hand side of the equation of motion (1) for ¢, since
that approximately emulates the effect of a Bjorken-type scaling expansion in D spatial
dimensions [20]. The result is illustrated in Fig. 4. It appears that a purely longitudinal
expansion, D=1, is insufficient for bringing the system into unstable region, which is in
accordance with earlier simulations [12,21]. Thus, if a sufficient quench is to be produced
by expansion alone, it is evident that a considerable amount of transverse expansion is
required as well.

The condition for the dynamical development of a quench can be quantified by con-
sidering the characteristic time scale for the cooling, tcet = —E/F =~ t/D. Then D=1
translates into {0 = to at the time at which the system is started off (usually taken
as tp = 1 fm/¢). Thus, in order to surpass the critical value D > 1.6 (see Fig. 4), t.0l
must be shorter than about 0.6 fin/c. Results obtained with the parton cascade model
for central collisions of gold nuclei at RHIC energies [22] suggest an effective value of
Deg = 1.15 which would thus be too small to bring the system inside the unstable region.
It is obviously important to make a refined cstimation of this key quantity. since it has a
decisive bearing on the prospects for the occurrence of disoriented chiral condensates.

4. OBSERVABLES

While awaiting the outcome of such further investigations, let us assume that the dy-
namics of the nucleus-nucleus collision does in fact produce a sufficiently rapid quench
to force the system through the region where the soft pion modes are being amplified.
We may then turn to the question of how this will be manifested in the observables. In
order to illustrate the discussion by specific results, we shall concentrate on scenarios
corresponding to an intermediate cooling rate, [)=2.

We first note that the Rayleigh cooling causes the field fluctuations to fall off as é¢ ~
t7P/% at large times, so that the energy density drops as ~ t77, like in a scaling expansion
in D dimensions. Thus, the decoupled linear regime is approached where the field may
be represented as a superposition of uncoupled plane waves having a complex frequency,
wi & e - iy with v = D/2¢.

Furthermore, for notational convenience, the real field é{x, 1) = ¥, orexp(zkz) and
its time derivative ¢ (x,t) = Y ¢, exp(ikr) may be combined into the complex field
x(z.1) = T v exp(ika) where xx = (ex/2) 2y + 1(2e,) V2. For large times we then
have ¥i = —iwr Xk, except for small higher-order terms in the time dependence of .
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In order to calculate observable quantities, it is necessary to associate the chiral field x,
the quantity that is propagated dynamically, with a specific quantum many-body state,
[x). This can be done by means of a coherent state and we make the association

v [x) ~ exp[3 xxal]]0) (9)
k

where &, denotes the quasi-particle annihilation operator. The coherent state |y} does not
have a definite particle number. Rather, the multiplicity of particles in a given mode £ is
a Poission distribution characterized by the mean value np = (x &zdkh’) = XiXk- Thus
it is possible to extract any hadronic observables of interest. (Since the generalization is
straightforward, the above sketch is made for the simplest case possible: only one spatial
and one internal dimension and without any special isopsin correlations imposed.)

4.1. Pion power spectrum and correlation function

Figure 5 shows the resulting power spectrum of the emerging pions, as a function of
their kinetic energy, Pr{lyin) ~ L "ilePé(Ekin + my — €), as explained above. There
is a clear enhancement at the lowest kinetic energies, of the type discussed in rel. [23].
There is no such enhancement for D=1. whereas D=3 produces a significantly larger
enhancement of the soft part of the pion spectrum [16].

This non-equilibrium feature has an important effect on the pion correlation function
Crlria) =< mw(ry) - w(ry) >. The increased strength of the softest pion modes causes ('y
to acquire a pronounced tail, as shown in Fig. 6. While the correlation function retains
an approximately thermal form for D=1, it widens steadily for larger cooling rates [16].

Moreover, since the order parameter is initially small, its initial development is primarily
a radial growth in the chiral O(4) space, until ¢g & f. has heen reached. Thus, there is
practically no rotational motion generated and its subsequent oscillations are well directed
in isospace. (The instability affects only the axial vector current density, so that the
vector current density remains small.) The essential effect of the quench is thus the
establishment of “domains” within which the pion field exhibits long-wavclength large-
amplitude oscillations in a definite isospin direction.
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Figure 5. The pion power spectrum after the  Figure 6. The pion correlation function
non-equilibrium cooling with D=2 (Fig. 4).  after cooling with D=1,2.3 as in Fig. 4.
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4.2. Neutral pion fraction

It was noted early on that isospin-directed oscillations of the pion field will result in an
anomalous behavior of the neutral pion fraction f = n,, /n. [1-6]. Indeed, the distribution
would be given by P(f) = 1/(2v/f) in the idealized scenario where all the pions observed
arise from a fully aligned source. In practice, the observed pions may originate from
unrelated regions and the anomaly is then attenuated. This is illustrated in Fig. 7 which
shows the result of combining pions from N independent sources. A usual Poisson-like
distribution peaked near f = %
equivalently, when the distance between emission points is large in comparison with the
correlation length.

In order to give a quantitative feeling for what this inherent feature amounts to in
practice, we show in Fig. 8 the distribution P(f) extracted from an ensemble of 100
events that have been cooled with D=2, as explained above. When all the pions are used
for the calculation of f, the resulting distribution looks fairly normal, but when only pions
with a kinetic energy below 200 MeV are considered, then P(f) broadens significantly
and attains an anomalous form. However, its appearance still differs significantly from
the ideal form, which is only reached if all the pions arise from a single mode, such as the

emerges when there are many independent sources, or

one having k==0.
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Figure 7. The neutral fraction distribution Figure 8. The distribution P( f) when var-
P(f) resulting from N similar sources having ious energy cuts are applied, as extracted
independent isospin alignments. from an ensemble obtained with D=2,

This important feature can also be brought out by viewing a given source at different
scales, as illustrated in Fig. 9 where the total source is divided into ever smaller sources,
cach one leading to a separate value of f. As the source size shrinks, its pion field is
increasingly well aligned and the associated P(f) grows correspondingly more anomalous.
(For wavelet-type analyses of DCC domain structure, see refs. [24--26].)

The key quantity determining the form of the extracted P({f) is the pion correlation
length. In the examples above, the growth of the correlation length was caused by the
non-equilibrium evolution following a quench. However, a large correlation length can
also exist in thermal equilibrium, since it grows steadily as 7" is reduced, and thus similar
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results can be produced by a thermal source, as is illustrated in Fig. 10. Therefore, the
appearance of an anomalous neutral pion fraction distribution is not a unique signal of the
DCC phenomenon. More elaborate analyses are thus required and it may be preferable
to invoke several different observables. In particular, electromagnetic observables, namely
dileptons [27,28] and photons {29], may provide valuable additional information.

6.0 L B S B A A 6.0 TR T T T T T
L H . - e e
5ol 8x8x8: D=2 | 50k 51 8x8x8: T=200 |
g s PN
a R R AQ=BxBx8 ] a PR R AQ=8x8x8 ]
=40+ -=-= AQ=dxdxd >4.0 |- P ---- AQ=4xdx4
- —— AQ=2x2x2 B I —— A=22x
§ - —— AQ=ix1x1 ] é ] ’,’/\ t[‘ — AQ=IxD1 |
2 3.0 -1 e 3.0 AR -
= = [N 1
£ £ . \J
g g2or rT \\ )
e 2 ; 3 :
o o :
1.0 |- ] : n
NN )
0.0 0.0 '+
0.0 02 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Neutral pion fraction f Neutral pion fraction f

Figure 9. P(f) for a cube with L=8 {m that Figure 10. P({f) for a cube prepared in
has been cooled with D=2 and then subdi- equilibrium at 7=200 MeV and then sub-
vided into ever smaller cubic sources [23]. divided into ever smaller cubic sources.

4.3. Electromagnetic signals

The non-equilibrium DCC evolution following a quench was recently found to enhance
the photoproduction significantly and it was suggested that this effect may provide an
experimental signature for the formation and relaxation of DCCs in nucleus-nucleus colli-
sions [29]. Furthermore, long-wavelength pionic oscillations and their interaction with the
thermal environment can be a significant source of dileptons and recent studies [28] sug-
gest that the yield of dileptons with invariant mass near and below 2m, may be enhanced
by up to two orders of magnitude.

This latter feature is illustrated below. Once the field evolution is known, the invariant
differential rate for dilepton production can be expressed in terms of the electromagnetic
current density, J () = 7 (2)0,m2(7) — ma(z)d,71(2), as

d*N 2« ., (q*¢" g . -
= (5= =) [t [ty g e U gy)
PT (q4 ) [t a0 ) (10)

for each individual event. An average over an ensemble of individual evolutions can then
be made subsequently, as is done experimentally.

It is reassuring to note that if such an average is made over a thermal ensemble of
free-field evolutions, then the usual expression for production of dileptons with invariant
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mass M by pion annihilation is recovered exactly [28],

d*N a’ n? ( 4m3)7§ (1)

M?

= diqdiz "= 3 (2m)*

where ng is the thermal occupancy of pion states with the matching encrgy o = M/2.

Figure 11 shows the dilepton production rate in a source in thermal equilibrium at
T'=140 MeV, together with the corresponding result obtained when the system is prepared
in a quenched configuration where nearly all the thermal energy (about 40 MeV/fin?) has
been converted into potential energy of the displaced order parameter [28]. As is shown in
Fig. 12, the release of the system causes the order parameter to execute large oscillations
around its equilibrium value leading to a significant enhancement of the dileptons. In
addition to the amplification that occurs whenever the system is inside the unstable region,
as discussed above, there is an additional enhancement resulting from the parametric
armplification caused by the approximately regular oscillation of the order parameter with
a frequency near the o mass [28,29]. Although only rather schematic scenarios have been
considered so far, the large magnitude of the enhancement should provide a stitnualus for
more refined studies.
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Figure 11. The dilepton production rate  Figure 12. The dynamical path of the field,
d*N/(d*qV At) as a function of the magni-  as projected onto the chiral diagram, for the
tude of the dilepton momentum, for dilep-  quench scenario employed for the dilepton
ton masses near M=300 MeV [25]. calculation shown in Fig. 11.

5. CONCLUDING REMARKS

The present discussion has been concerned with the conditions for the occurrence of
disoriented chiral condensates and the possible observational implications. The essential
features of a large body of dynamical simulations with the linear ¢ model! can be un-
derstood within the simple framework of a serni-classical Hartree treatment. The studies
suggest that a sufficiently rapid quench can only be expected if the cooling rate is faster
that what is provided by an idealized longitudinal scaling expansion. A more definite
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assessment will require refined dynamical calculations that take better account of the
three-dimensional geometry as well as the additional degrees of freedom in the system.

If indeed the collision dynamics leads to DCC formation, then the experimental identifi-
cation of the phenomenon presents a daunting task. The most prominent hadronic signal,
the neutral fraction distribution, requires the simultaneous detection of both charged and
neutral soft pions. Moreover, the magnitude of the signal depends on the ability to zoom
in on small source sizes. As for electromagnetic observables, the exploratory studies sug-
gest that large enhancements may occur. For all the possible DCC signals, it is important
to investigate how they are affected (presumably adversely) by the environment generated
in the nucleus-nucleus collision.

The author acknowledges helpful discussions with Xin-Nian Wang and wishes to thank
Wolfgang Bauer and Ramona Vogt for their reading of the manuscript.
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